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Abstract—Dielectric resonators (DR’s) are widely used in
microwave/millimeter-wave technologies. In this paper, the
coupling between a dielectric resonator and a microstrip circuit
is studied. To analyze this problem, an integral equation is
developed for the current distribution on the microstrip circuit.
The Green’s function used in this integral equation is the
Green’s function of the field in a layered medium modified by
adding a term corresponding to the DR-scattered field. This
field is produced by equivalent electric and magnetic sources
assumed to be on the DR’s surface. An efficient numerical
method is applied which gives an approximation of the field near
the resonant frequency of the DR. The results clearly show the
effect of the DR on the microstrip circuit’s current distribution
and provides a thorough insight into the coupling mechanism.
The coupling parameters can be estimated from the current
distribution. The efficiency of the method as well as its flexibility
in dealing with a general configuration of the DR and microstrip
circuit makes it promising for CAD applications.

I. INTRODUCTION

N ORDER to use a dielectric resonator (DR) in a microstrip

circuit, the coupling characteristics of the DR to a nearby
microstrip circuit as well as its resonant frequencies should be
known. Few efforts have been made to analyze the coupling
between a DR and a microstrip transmission line on a grounded
dielectric substrate [1], [2]-[5] and moreover, most of them
have been demonstrated for the simplest geometry of the
metallization, i.e., a straight microstrip-line, in the vicinity of
the DR. No general and systematic way has been established
to analyze the effect of a DR on a printed circuit metallization
with a general shape, except of course for highly time-
consuming methods like the Finite Element Method which
need extensive computational resources. In the literature, the
DR’s field has been assumed in the absence of metallization
and then the coupling of this field to the propagating mode
of the microstrip line has been studied [1], [2], [4]. Here, the
DR and metallization have been considered simultaneously in
an interactive fashion.

The general configuration of the problem is depicted in
Fig. 1. As shown in this figure, a cylindrical DR with £ =
€4 = €pq€0 1S mounted on a grounded dielectric substrate with
€ = €; = &£p5€p. To tune the DR’s resonant frequency, a
tuning plate may be installed over the structure (not shown in
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Fig. 1. A dielectric resonator (DR) coupled to a general N-port microstrip
circuit on a grounded substrate.

the figure). An arbitrarily shaped metallization is printed on
the substrate in the vicinity of the DR. The metallization is
assumed to be infinitely thin. We are interested in the effect
of the DR on the current distribution on the metallization.
The S matrix of the N-port circuit within the dashed border
in Fig. 1 is then obtained from the current distribution. The
frequency of operation is assumed to be near a specific
resonant frequency of the DR. In this frequency range the
currents on the metallization induce a strong reactive field
in the DR, which in turn affects the current distribution on
the microstrip. Therefore, there is a bilateral relation between
the current on the metallization and the DR’s scattered field.
In the literature, this bilateral relation has been ignored to
simplify the analysis, e.g., the DR’s field has been assumed in
the absence of metallization and then the effect of this field on
the propagating mode of the microstrip line has been studied.

A set of coupled integral equations can be formulated for
the problem depicted in Fig. 1. The unknowns in these integral
equations are the surface current density fs over the microstrip
metallization and the equivalent electric and magnetic sources
on the surface of the DR, Spg, denoted by S¢ = (J?4, M4).
The metallization on the substrate is assumed to be infinitely
thin.

The integral equations for the coupling problem can be
obtained by applying the boundary conditions for the tangen-
tial electric field on the surface of the metallization, Spe, Of
Fig. 1, and the continuity of the tangential components of E
and H on Sp r which are expressed as

-1 % [Ey(Ty) + Ey(S9)]) =h x B on Sy (D
A% [E1(Jy) + Ef(§9] = =i x Eo(S%) on Spr (2)
fox [Hy(J) + H(S9] = - x Hy(§%) on Spr. 3)
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In (1)~(3) Ey(J,) denotes the electric field produced by J,

in the layered medium without the DR, Eo(gd) denotes the

electric field produced by 5% in a homogeneous medium with

€ = g4, and so on. The incident field denoted by Eext is

considered known and is only applied on the metallization.
The integral (1)—(3) can be written in the form

[mm [ md j; 7 X Eext

[Ldm [dd ] [gd} = [ 0 ] )
where L™ L™, L% and L% are integral operators. The
superscript m stands for metallization, and d stands for DR
surface. The first and second superscripts on the L operators
indicate the observation and source locations, respectively.
Although the unknowns in the integral (4) are j;, and S_"d, one

can eliminate S by combining the first and second equations
of (4) and obtain

me(j;) _ Lmd(de)—lLdm(j;) — A x E—v’ext' (5)

The first term of the left hand side of (5) is the conventional
term used in the EFIE formulation for a planar metallization
in a layered medium [6]. The second term is the electric field
due to the presence of the DR ( DR-scattered field). This term
is the novel aspect of the formulation presented in this paper.
Writing (5) in integral form yields

_hx { / Co(A) - Ju() ds
/ Co(F|7) - To(7) ds’} =7 x B (6)

where 5E is the dyadic electric field Green’s function in the
layered medium in the absence of the DR, -@2 is the DR-
scattered Green’s function to be determined, and 7 is the unit
vector normal to Spe;. The Green’s function G2 physically
represents the response (scattered field) of the DR on the
layered medium due to a unit current excitation.

Writing ¢ Gg in terms of the well known vector magnetic
potential G 4 and scalar electric potential Gy [6] defined in a
multilayered medium at the operating frequency of w, yields

i x {jw / B )

+v/ Gy (117)ps(7) d’

rnet

- [ @ dwas |

met

=1 X Eewt(,';'),,, c Smet (7)

where p, is the surface charge distribution on the surface of
the metallization, Spet.

In Section II an efficient method will be presented to find
an approximation for G near one of the resonant frequencies
of the structure so that (7) can be implemented numerically.
The novelty of the proposed technique is the possibility of
separating the effects of the metallization and the DR, and
expressing the DR effect by an additive term. In Sections IIf
and IV numerical results are presented for a stop-band and a
pass-band DR-microstrip interactive circuit.
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Fig. 2. Excitation of a dielectric rod by a current element.

II. EXCITATION OF A DR BY A CURRENT SOURCE

The G, term in (7) is the DR-scattered field induced by a
current element. The procedure used here in solving for this
field is as follows. First, suppose that the dielectric rod is
infinite in both directions as shown in Fig. 2. The field for
a current element providing the excitation to this rod can be
obtained via the method described in [7], [8]. This field is
in terms of a Fourier series in ¢ direction (e/™¥). Fig. 3
is obtained from Fig. 2 by truncating the dielectric rod at

= h and z = h + d. Each term of the Fourier series is
reflected by the two grounded slabs at the top and bottom
of the DR in Fig. 3. To simplify the formulation, the two
grounded slabs are modeled by employing the Generalized
Impedance Boundary Condition (GIBC) [9]. Therefore, the
reflected waves are obtained by enforcing GIBC at z = A
and z = h + d. The advantage of GIBC technique over the
conventional mode matching is that instead of considering the
Helmbholtz solution in three regions I, II, and III in Fig. 3,
we consider only one region, i.e., the modes of the dielectric
rod. The total scattered field is the sum of these terms over
the index m. Of course, in a numerical computation one
should truncate the summation. If the frequency of interest
is near a resonant frequency of the DR, one of the terms
with a specific azimuthal index of variation (m) would be
expected to have the most significant contribution to the total
field [8]. Since in practice a DR is always used near one of
its resonant frequencies, we will consider only the azimuthal
index corresponding to a specific DR mode and neglect the
other terms of the series. Moreover, since a DR resonance
is mostly due to constructive reflections of a specific guided
mode at both ends of the rod, and the power stored in the DR
is mostly in the fields of that mode, the radiation field and
other non-resonant guided modes are neglected. This results
in a very efficient estimation of the field bound to the DR
near its resonant frequency. The G field ensures the necessary
boundary conditions at the cylindrical wall (p = a) of the DR.
Due to the noninclusion of other modes of the dielectric rod,
the boundary conditions at z = h and z = h 4 d is satisfied
approximately.
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Fig. 3. A DR mounted on a grounded substrate and under a tuning plate,
excited by a unit electric current dipole.

In reference to Fig. 2 for a current element denoted by
J(7) = 116(7 — 7)o ®8)

all of the TE* field components can be obtained from H,
written in the form

Ng
=§:b+H$n+b£I%L+Hw> ©)

where H. Z(R) is the radiation field of the dielectric rod [9], and
H* represents the TEy,, guided mode of the dielectric rod

z0n

defined by

Jo(€onp) p<a
H;%n — e:Fjﬂfm(z—h){ Jo(&ona) (10
KO(COna) KO(COnp) p>a

and (on,&on, and Bo, are the solutions of the associated
characteristic equation

J1(éona) K1 (¢ona)
_ = Jo(Eon 11
fon " ConKolCona) 0leona) (D
with
&5n + Bon = k5 = erakg, (12)
—(3, + BE, =kE. (13)

In (9), b (associated with waves traveling in +z directions,
respectively) are obtained [8] as

b:t ¢ [Engn] = [471'(,(}/1/0/60na/ ‘]O(é.ona)
J (fOna) Jl(f()na)>< 1 ):!—1 y
< 2 €0na 2 + fO'n ( )
where
J1(§0np) p<a
Eﬁ:ﬁmwmﬂﬁw@@
ConKo(Cona) 1 (Conp)  p>a.
(15)

Equation (9) gives H, as a summation of TE# guided modes
and a radiation field and describes the TE?® part of the field
induced by a current element in an infinitely long dielectric
rod. The total excited field, G, in Fig. 3 is composed of the
original b;f H, +b; H ,, field in (9) and the fields reflected
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DR

Fig. 4. A DR coupled to a straight microstrip line to realize a stop-band filter.
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z0n

from the slabs in Fig. 3, i.e.,
the total field is

and ¢, H_ .. Therefore,

Htot — of +cHHS o, v e HDy 2>2' (16)
#on C_}‘}I;'—On (bn +cn )HzOn z<Zl

where z and z’ refer to observation and source points, respec-
tively. The unknown coefficients cf in (16) are then obtained
by enforcing GIBC at z = h and z = h + d. HES!, acts
as a potential function for all the components of the excited
resonant field, G. For further details the reader is referred to
8] and [9].

With the knowledge of all the required Green’s functions,
(7) can be solved numerically by the method of moments
(MoM) for the unknown current distribution on the metalliza-
tion. For the results presented in this paper, the current and
charge distributions on the metallization are segmented into
current cells and charge nodes, respectively. Two-dimensional
pulse functions are used as the basis functions. The resultant
set of equations is then solved for the unknown current
distribution J,. Since the method was developed for CAD
applications, a special technique was implemented to compute
the elements in the MoM matrix very efficiently [8]. The
additive term Gy(7]#) in (7) provides the effect of the
presence of the DR on the current distribution. Applications
of the numerical scheme in the DR-microstrip circuit coupling
analysis is demonstrated in Sections IIT and IV.

III. ANALYSIS OF A BAND-STOP DR FILTER

One of the DR-microstrip interactive circuits commonly
used in microwave technology is shown in Fig. 4. This circuit
has been studied by the MoM. This configuration is suitable for
exciting TEg,s modes of the DR. For this group of modes, the
electric field has only E,, component. Therefore, they can have
a strong coupling to the axial microstrip current in the vicinity
of the DR. The TEp;s mode widely used in DR-microstrip
circuits has been selected for the test.

The current distribution obtained by the MoM solution of (7)
is used to find the S matrix of the circuit in Fig. 4 as a function
of frequency. This S matrix can be attributed to an equivalent
circuit model of the DR-microstrip interaction (at least over
a narrow band around the resonance frequency). One choice
of equivalent circuit for the configuration under consideration
here is depicted in Fig. 5. One may then choose the parameters
of this equivalent circuit (L, C, G, and Qg) to fit the MoM
generated .S matrix. This circuit model can then be used in the
design and analysis of a more complicated microwave circuit.
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Fig. 5. An equivalent circuit for the stop-band filter.

This procedure is demonstrated in this section using the case
of a band-stop DR filter.

In Fig. 5, the DR has been modeled by a parallel GLC
circuit. L and C represent the reactive field of the DR, while
G = 1/R is the model for loss in the DR which consists of
dielectric and radiation loss. Thus, for a DR with low loss,
high e, material, G is usually very small and may be ignored.

The GLC circuit Fig. 5 has an admittance of

Y: = G(1+ ju) (17)
where
u Qo(—“’— - 3‘1) (18)
wo w

Qo is the internal quality factor of the DR defined by Qp =
woCR and wy = 1/v/LC is the angular resonant frequency of
the GLC circuit. For w close to wg, one may write u as

)
ws2Qo (19)
wo
where fw = w — wy.
The S matrix from A to B in Fig. 5 is described by
2
n
= 2
. YA (20)
27.Y:
= 2
2= T 577, 2D

One can obtain all of the resonance and coupling information
from the above S matrix. To characterize the coupling more
clearly and in an engineering fashion, note that

891 1

— = — 4 ju, (22)
S11 c
where
1 27,
— =@ 23
7" (23)
and
bw
Ue = 2Qp—. 24
wo

In the above equations 0. is called the coupling parameter,
and Qg 2 Qo/ . is called the external quality factor of the
DR. By combining (22) and (24) one can get Qg in terms of
the S matrix as

_wo d [ (sm ’
Q= 2 Ow [Im(811)]w:w0 @
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Fig. 6. |s11| and [sg1| from C to D for Ny = 1 and 6§ = 1 mm. Solid line:
MoM, dotted line: experimental from [1]. The results of the MoM have been
shifted down by about 40 MHz (1% shift in resonant frequency) to make the
comparisons easy.

Equation (25) has been employed in [1] to find Qg of
the DR in Fig. 4 from the measured S matrix around the
resonant frequency. For numerical evaluation of Qg, the
current distribution obtained by MoM is used to calculate so;
and s1;. The numerical value of Qg is then determined from
(25).

Circuit specifications: For the numerical demonstrations
the line has been taken long enough to assure that the (spatial)
transient effect of the DR coupling has decayed sufficiently at
the far ends. This has been assured by observing that varying
the length of the line does not affect the S matrix except,
of course, for a simple phase shift. The fixed specifications
of the circuit are ¢,, = 2.62, h = 1.57 mm, H = 150 mm,
a=819mm, d =544 mm, €,q = 27, W = 4.9 mm, and
1= 39 mm, where £,,,h, and H are the substrate relative
dielectric permittivity, thickness and the height of the upper
PEC shield, and a, d, and ¢,.4 are the DR’s radius, height, and
relative dielectric permittivity, respectively. The number of
charge cells in the length and width directions are designated
by N; and N,,, respectively. W and ! are defined in Fig. 4.
For the numerical tests here we have fixed N; = 52, and N,,
varies from 1 to 3.

The s11 and s2; obtained by the MoM are shown in Figs. 6
and 7. For comparison, the measured data (wy and Q) from
[1] has been used to obtain the parameters L and C of the
equivalent circuit shown in Fig. 5. One may note that |sq|
obtained by MoM does not reach the value 1.0. This is due
to the radiation and surface wave loss of the microstrip circuit
(automatically included in the Green’s functions G4 and Gv).
But the same curve derived from the experimental data reaches
the value 1.0. This is because no value was reported for G in
[1], and thus in the circuit model of Fig. 5 it was neglected
(G = 0).

If only a guided mode is assumed in the DR, the resonant
frequency calculated with this method is within few percent
of the exact value. Since the DR has a very narrow-band
resonance and its quality factor is typically of the order of
several hundreds to several thousands, any small error in
resonant frequency makes the comparison on the same diagram
difficult. Therefore, the results of the MoM have been shifted
down by about 40 MHz (1% shift in resonant frequency) to
make the comparisons easy in Figs. 6, 7, 13, and 14.
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Fig. 7. <s11 and <s21 from Cto D for N, = 1 and 6 = 1 mm. Solid line:
MoM, dotted line: experimental from [1]. The results of the MoM have been
shifted down by about 40 MHz (1% shift in resonant frequency) to make the
comparisons easy.
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Fig. 8. Qg versus 6 for the DR-microstrip coupling.

() r has been computed versus §, the distance between DR
and line, and is shown in Fig. 8. One of the curves corresponds
to NV, = 1, i.e.,, no segmentation along transverse direction.
The other curve corresponds to IV,, = 3. It can be observed
that discretizing the microstrip line along transverse direction
improves the result. This will be explained in more detail later.

Fig. 8 also shows that for large separation between DR
and microstrip line, the assumption of only the resonant
guided mode and not accounting for the DR radiation field
underestimates the resonant field and the coupling. Therefore,
the Qg of the circuit is overestimated for large distances.
However, DR’s are mostly used in the immediate vicinity of
the nearby metallization and this method is able to predict
their Qg with good accuracy.

The MoM results for the current distribution on the line for
‘N,, = 3 with/without the DR are shown in Figs. 9 and 10. By
discretizing the metallization in width, the current distribution
is allowed to vary along ftransverse direction. As can be
observed in Fig. 9, in the absence of DR, the axial currents at
edges of the line are equal and larger in amplitude than the
axial current at the center of the line. This stems from the fact
that the structure is symmetric along transverse direction and,
the axial current is singular at the line edges. Also note that
the transverse currents are negligible compared to the axial
current, which is one of the features of the fundamental mode
of a microstrip line.

By adding the DR to the structure at one side of the line, the
transverse symmetry of the current is no longer maintained.
Fig. 10 shows that at the coupling area, which is near x =
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Fig. 9. The current distribution on the line near the resonant frequency, for
Ny = 3 and § = 1 mm in the absence of DR. z is the axial distance on
the line.
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Fig. 10. The current distribution on the line near the resonant frequency,
for Ny = 3 and 6 = 1 mm, in the presence of DR. x is the axial distance
on the line.

39 mm, the current distribution is tilted toward the DR. This
asymmetry rapidly disappears at points away from the DR.
Moreover, the transverse current in this case is no longer
negligible. Fig. 10 shows that at the transition region—the
region between the symmetric and asymmetric current distri-
bution—the transverse current is increased to redistribute the
axial current toward a symmetric one. These observations are
further appreciated by eliminating the transverse current from
the scene, which produces the results shown in Fig. 11. In
this figure the asymmetry in the axial current does not tend to
vanish. This observation has been confirmed by testing it on
longer lines. The transverse distribution of the axial current has
an oscillatory behavior and does not stabilize. Thus, inclusion
of the transverse current is important for accurate modeling
of the coupling.

In summary, letting the axial current distribution vary along
transverse direction needs a transverse current. Part of the DR-
microstrip line coupling is achieved by this transverse current.
This results in a stronger coupling or equivalently a lower Q g,
which justifies the behavior of the () curves with respect to
N, in Fig. 8.

IV. ANALYSIS OF A BAND-PASS DR FILTER

As the second example, the circuit in Fig. 12 has been
studied. Since the two lines are relatively far from each
other, one expects that energy is not transferred from input
to output at frequencies far from the resonant frequency. As
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Fig. 11. The current distribution on the line near the resonant frequency, tor

Ny =3 and § = 1 mm, in the presence of DR and with eliminating the
transverse current. z is the axial distance on the line,

Fig. 12. = A band-pass DR filter.

the operating frequency approaches the resonant frequency,
the DR links the two ports. Therefore, this circuit is expected
to act like a band-pass filter. For simplicity, the circuit has
been assumed symmetric, so that the input and output ports
are interchangeable.

The circuit specifications have been assumed to be the same
as those of the band-stop filter of the previous example, except
that [ = 50 mm and /. = 12 mm An equivalent circuit can be
proposed in a similar way as in the previous circuit [8].

For 6§ = 1 mm and N,, = 1,s1; and s9; are computed
and shown in Figs. 13 and 14. These results are compared
with those obtained by the simulation of its equivalent
circuit with experimental parameters extracted from [1]. By
comparing these results with those of the previous example,
i.e., Figs. 6 and 7, one realizes that s;; and s»; have much
broader bandwidth for this circuit. This is because, in
Fig. 12, the resonator sees an additional load from the upper
line. Moreover, the resistive value of this load is almost
half of that of the previous example. »

The input and output line current distributions at the res-
onant frequency were observed numerically. In the absence
of DR, the input current has a standing wave pattern due to
the open circuit reflection at the end of the input line. On
the output line, no current is induced. By including the DR
to the structure, the standing wave pattern at the input line
is replaced with a traveling wave pattern indicating that the
power is transferred from input line to the output line. The
induced current on the output line also has a traveling wave
pattern, as a result of the absorption of energy by the matched
output load.
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Fig. 13. |s11| and |s21| from C to D for N, = 1and § = 1 mm. Solid line:
MoM, dotted line: experimental from [1]. The results of the MoM have been
shifted down by about 40 MHz (1% shift in resonant frequency) to make the
comparisons easy.
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Fig. 14. <s11 and <so1 from C to D for Ny = 1 and § = 1 mm. Solid
line: MoM, dotted line: experimental from [1]. The results of the MoM have
been shifted down by about 40 MHz (1% shift in resonant frequency) to
make the comparisons easy.

V. CONCLUSION

In this paper we have developed a versatile and effi-
cient tool for the analysis and design of dielectric resonator-
microstrip interactive circuits. A mixed potential integral equa-
tion (MPIE) was used to solve the interaction between the
DR and the microstrip circuit. The coupling between the DR
and a nearby metallization with an arbitrary shape has been
modeled by solving this integral equation. Method of Moments
(MoM) was employed to solve the -integral equation. The
method has led to the direct calculation of the S matrix of
the circuit as well as its coupling parameters and has given
a clear qualitative insight into the behavior of DR-microstrip
interactions. The flexibility of the method to analyze a DR
on a generally shaped metallization, and its computational
efficiency has been demonstrated through the analysis of a
band-stop and a band-pass DR-microstrip filter. The calculated
S matrices of the DR filters are presented. Also the current
distributions on the metallization-with and without the DR
show the coupling mechanism of the DR-microstrip. circuit
very clearly. The external quality factor, (. of a DR coupled to
a straight microstrip line is computed and compared with mea-
sured data. Also it is shown that a part of the coupling is due
to the transverse current of the microstrip line which is usually
neglected. Numerical results also show that the presence of the
DR disturbs the symmetry of the microstrip line’s axial current,
and demonstrates the role of the transverse current in the
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redistribution of the axial current toward a symmetric one. The
developed tool can predict the behavior of complicated DR-
microstrip interactive circuits and aids one in the determination
of the optimum parameters of the DR/metallization part of the
circuit. Use of this method in the design of a band-pass filter
with two DR’s has been demonstrated [8]. The time-efficiency
of the method in conjunction with its versatility makes it an
attractive choice for CAD software development.
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